零基础求矩阵特征值和特征向量



虽然说零基础,但你还是不得不掌握行列式的求法。本文的矩阵都是低阶的,不讲述一般性的、N阶矩阵的解法。

特征值和(右)特征向量的定义

假设 A 是一个方阵。若一个非\(\vec{0}\)的向量\(\vec{x}\)满足下面的等式

\(A\vec{x}=\lambda\vec{x}\)

则\(\vec{x}\)为矩阵A的(右)特征向量,而\(\lambda\)是矩阵 A 相对于\(\vec{x}\)的特征值。[5]一个特征值对应的特征向量有无穷个。

(左特征向量是乘在矩阵左边的特征向量,即\(\vec{x}A=\lambda\vec{x}\)。左特征向量不常见。)

求特征值和特征向量

从定义得以下变换

\(\begin{align*}
A\vec{x} &=\lambda\vec{x} \\
A\vec{x}-\lambda\vec{x} &= 0\\
(A-\lambda E) \vec{x} &=0 \\
\end{align*}\)

有定理:

设M是一个\(n\times n\) 的矩阵,未知数X为n×1的矩阵,则方程式\(MX = 0\)有非平凡解,当且仅当M是奇异的(不可逆的),即\(\det(M)=0\)(det为求行列式运算符)。[6]

于是我们获得特征值和特征向量的求法:

令$latex \det(A-\lambda E)=0$(A为矩阵,E为单位矩阵)的$latex \lambda$,为矩阵A的特征值(有多个)。

对于N阶矩阵,有N个特征值,可能重复。对于每个特征值$latex \lambda_i$,求令$latex (A-\lambda_iE)X=0$的$latex X_i$,为$latex \lambda_i$对应的特征向量。特征向量不得为零向量。特征向量有无穷个。

例1

$$A=\begin{bmatrix}
1 & -2 & 2\\ -2 & -2 & 4\\ 2 & 4 & -2
\end{bmatrix}$$

求A的特征值和特征向量。[1]

解:

$$\det(A-\lambda E)=\det \left ( \begin{bmatrix}
1-\lambda & -2 & 2\\
-2 & -2-\lambda & 4\\
2 & 4 & -2-\lambda
\end{bmatrix} \right )=0$$

$$\begin{align*}
(1-\lambda)(\lambda+2)^2-16-16-16(1-\lambda)+4(-2-\lambda)+4(2+\lambda) &= 0\\
(2-\lambda)^2(7+\lambda) &=0
\end{align*}$$

(如果把上式改写为以$latex  \lambda $的降幂排列的多项式,则称为矩阵A的特征多项式,即$latex -\lambda^3-3\lambda^2+24\lambda-28$)。

求得 \( \lambda_1=\lambda_2=2\)或\(\lambda_3=-7\)。

所以矩阵A的特征值是2、2、-7。接下来对于每个特征值,求其对应的特征向量。

当$latex  \lambda=2 $时,

\( (A-2E)X=\begin{bmatrix}-1 & -2 & 2\\ -2 & -4 & 4\\ 2 & 4 & -4\end{bmatrix}
\begin{bmatrix}a\\ b\\ c\end{bmatrix}=0 \)

 

\(\left\{\begin{matrix}
-a-2b+2c=0\\ -2a-4b+4c=0\\ 2a+4b-4c=0
\end{matrix}\right.
\quad
\Rightarrow
a=-2b+2c \)

[2](视b、c为常数)

特征向量\(X=\begin{bmatrix}-2b+2c\\ b\\ c\end{bmatrix}=b\begin{bmatrix}-2\\ 1\\ 0\end{bmatrix}
+c\begin{bmatrix}2\\ 0\\ 1\end{bmatrix}\)。

或改写为\(X=\begin{bmatrix}-2b+2c\\ b\\ c\end{bmatrix}=k_1\begin{bmatrix}-2\\ 1\\ 0\end{bmatrix}
+k_2\begin{bmatrix}2\\ 0\\ 1\end{bmatrix}\)(\(k_1, k_2\)不同时为0)。

当\(\lambda=-7\)时,

\((A+7E)X=\begin{bmatrix}8 & -2 & 2\\ -2 & 5 & 4\\ 2 & 4 & 5\end{bmatrix}
\begin{bmatrix}a\\ b\\ c\end{bmatrix}=0\)

 

\(\left\{\begin{matrix}
8a-2b+2c=0\\ -2a+5b+4c=0\\ 2a+4b+5c=0
\end{matrix}\right.
\quad
\Rightarrow
\left\{\begin{matrix}
a=-\frac{1}{2}c\\ b=-c
\end{matrix}\right. \)

(视c为常数)

特征向量\(X=\begin{bmatrix}-\frac{1}{2}c\\ -c\\ c\end{bmatrix}=-2c\begin{bmatrix}1\\ 2\\ -2\end{bmatrix}\)。

或改写为\(X=\begin{bmatrix}-\frac{1}{2}c\\ -c\\ c\end{bmatrix}=k\begin{bmatrix}1\\ 2\\ -2\end{bmatrix}\)(k不为0)。

 特征分解

按照定义(?),有\(AQ=QL\),两边同乘Q的逆矩阵,得\(A=QLQ^{-1}\)。

Q是一个矩阵,其每一列以此是A的特征向量的分量。L是一个矩阵,其对角线依次是A的特征值;其他元素为0。

例1

继续例1,

\(Q=\begin{bmatrix}-2 & 2 & 1\\ 1 & 0 & 2\\ 0 & 1 & -2\end{bmatrix}\)

\(L=\begin{bmatrix}2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & -7\end{bmatrix}\)。

注意特征值和特征向量要一一对应。

这里不要求计算Q的逆矩阵,借助数学软件(如Mathematica),得

 

获得了我们一开始的矩阵A,证明我们的特征向量和特征值是正确的。

特别的,如果矩阵A是对称矩阵(\(A=A^t\)),则有Q使得\(A=QLQ^{-1}=QLQ^t\),即Q的转置等于Q的逆。

易证

\(Q=\begin{bmatrix}-2 & 2 & 1\\ 1 & 0 & 2\\ 0 & 1 & -2\end{bmatrix}\)

时,\(QLQ^t\neq A\),于是我们重新求使该式成立的Q。

这里要用到格拉姆-施密特正交化。[3]

设\(v_2=(-2,1,0),\quad v_3=(2,0,1), \quad v_1=(1,2,-2)\),设\(\beta_1,\beta_2,\beta_3\)为\(v_1,  v_2,  v_3\)正交化后的向量。Q将由\(\beta_1,\beta_2,\beta_3\)组成。这里我故意没有按顺序对\(v_1,  v_2,  v_3\)编号,读者可以按不同的顺序对\(v_1,  v_2,  v_3\)编号,看能否求出Q。注意,Q并不是唯一的。

格拉姆-施密特正交化过程如下:[4]

\(\beta_1=v_1=(1,2,-2)\)

 

\(\begin{align*}
\beta_2 &= v_2-\operatorname{Projection}(v2,\beta_1)\\
&= (-2,1,0)-\frac{(-2,1,0)\cdot (1,2,-2)}{(1,2,-2).(1,2,-2)}(1,2,-2)\\
&= (-2,1,0)- (0,0,0) \\
&= (-2,1,0)
\end{align*}\)

 

\(\begin{align*}
\beta_3 &= v_3-\operatorname{Projection}(v3,\beta_1)-\operatorname{Projection}(v3,\beta_2)\\
&= (2,0,1)-\frac{(2,0,1).(1,2,-2)}{(1,2,-2).(1,2,-2)}(1,2,-2) -\frac{(2,0,1)(-2,1,0)}{(-2,1,0).(-2,1,0)}(-2,1,0)\\
&= (2,0,1)- (0,0,0)-(\frac{8}{5},-\frac{4}{5},0)\\
&= (\frac{2}{5},\frac{4}{5},1)
\end{align*}\)

然后把\(\beta_1,\beta_2,\beta_3\)正规化,变成单位向量。

\(\beta_1^{‘}=\operatorname{Normalize}(\beta_1)=(\frac{1}{3},\frac{2}{3},-\frac{2}{3})\)

 

\(\beta_2^{‘}=\operatorname{Normalize}(\beta_2)=(-\frac{2}{\sqrt{5}},\frac{1}{\sqrt{5}},0)\)

 

\(\beta_3^{‘}=\operatorname{Normalize}(\beta_3)=(\frac{2}{3 \sqrt{5}},\frac{4}{3 \sqrt{5}},\frac{\sqrt{5}}{3})\)

 

所以

\(Q=\begin{bmatrix}-\frac{2}{\sqrt{5}} & \frac{2}{3 \sqrt{5}} & \frac{1}{3}\\\frac{1}{\sqrt{5}} & \frac{4}{3 \sqrt{5}} & \frac{2}{3}\\0 & \frac{\sqrt{5}}{3} & -\frac{2}{3}\end{bmatrix}\)

(用Mathematica)验证Q是否正确:

2

 

结果为A,说明我们的计算是正确的。

参考资料

  1. 矩阵的特征值与特征向量, 5-特征值.pps
  2. 提要 67 :特徵向量的解法( 二)– 特徵根有重根, Summary_067.pdf
  3. Know eigenvalues, get Q of A=QLQ′
  4. The Gram-Schmidt Algorithm
  5. Eigenvectors and Eigenvalues 特征向量和特征值
  6. Inverse Matrices 反矩阵

 本文依照知识共享-署名-相同方式共享3.0协议发布

发表评论

电子邮件地址不会被公开。

:wink: :twisted: :roll: :oops: :mrgreen: :lol: :idea: :evil: :cry: :arrow: :?: :-| :-x :-o :-P :-D :-? :) :( :!: 8-O 8)